Splitting in a double-minimum potential with almost twofold degenerate lower levels

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1989 J. Phys. A: Math. Gen. 2261
(http://iopscience.iop.org/0305-4470/22/1/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:42

Please note that terms and conditions apply.

Splitting in a double-minimum potential with almost twofold degenerate lower levels

R J W Hodgson and Y P Varshni
Ottawa-Carleton Institute for Physics, University of Ottawa, Ottawa, Ontario, Canada K1N9B4

Received 19 July 1988

Abstract

An analytic continuation procedure using Taylor series is utilised to produce very accurate wavefunctions and eigenvalues for a double-minimum potential having almost degenerate eigenvalues. Comparison is made with results obtained by other means.

1. Introduction

Double-minimum potentials occur in several areas of physics, and a variety of techniques have been used over the years to investigate their eigenvalues and other properties (Morse and Stueckelberg 1931, Dennison and Uhlenbeck 1932, Wu 1933, Somorjai and Hornig 1962, Chan and Stelman 1963, Ezawa et al 1970, Fröman et al 1972, Polyakov 1977, Brezin et al 1977, Gildener and Patrascioiu 1977, Banerjee and Bhatnagar 1978, Zhirnov and Turev 1980, Pajunen 1980, Balsa et al 1983, Bhattacharya 1985). One such potential which has frequently been studied is the following:

$$
\begin{equation*}
V(x)=-k x^{2}+\lambda x^{4} \quad k, \lambda>0 . \tag{1}
\end{equation*}
$$

Its eigenvalue spectrum has the feature that the lower eigenvalues are closely bunched in pairs if the two wells are sufficiently separated. The Hamiltonian for the potential (1) can be written as

$$
\begin{equation*}
H(k, \lambda)=p^{2}-k x^{2}+\lambda x^{4} \quad p=-\mathrm{id} / \mathrm{d} x . \tag{2}
\end{equation*}
$$

As pointed out by Banerjee and Bhatnagar (1978), from the scaling ($x \rightarrow a x, p \rightarrow a^{-1} p$) properties of the Hamiltonian $H(k, \lambda)$ it follows that $H(k, \lambda)$ and $a^{-2} H\left(a^{4} k, a^{6} \lambda\right)$ are unitarily equivalent and therefore have the same eigenvalues. Hence $E_{n}(k, \lambda)=$ $k^{1 / 2} E_{n}\left(1, \lambda^{\prime}\right), \lambda^{\prime}=k^{-3 / 2} \lambda$. Thus one need only consider the eigenvalue problem of the reduced Hamiltonian $H(1, \lambda)=p^{2}-x^{2}+\lambda x^{4}$.

For accurate calculation of the eigenvalues of close-lying levels in double-minimum potentials, numerical methods have increasingly been used in recent years (Kolos and Wolniewicz 1969, Lin 1974, Tobin and Hinze 1976, Truhlar and Tarara 1976, Wicke and Harris 1976, Johnson 1977, Wolniewicz and Orlikowski 1978, Talman 1980). The most unfavourable conditions for a numerical integration arise when the potential in question has almost degenerate eigenvalues. One such potential was investigated by Wolniewicz and Orlikowski (1978) (wo):

$$
\begin{equation*}
V(x)=200\left(3 x^{6}-6 x^{2}-1\right) \tag{3}
\end{equation*}
$$

with symmetric boundary value conditions

$$
\begin{equation*}
y(-2)=y(2)=0 \tag{4}
\end{equation*}
$$

The lower levels for this potential are almost twofold degenerate (to almost 1 part in 10^{14}) and consequently this problem is numerically difficult. wo computed the eigenvalues for (3) by the bisection method and also by the Cooley method. Talman (1980) used a modification of the Cooley method to calculate the six lowest levels of the same potential. An inspection of the results of wo and Talman (1980) shows that there are considerable differences in the results of these two studies.

Recently one of the authors (Hodgson 1988a, b) has used an analytic continuation procedure using Taylor series to produce very accurate wavefunctions and eigenvalues for the Schrödinger equation. This method was first proposed by Holubec and Stauffer (1985) for scattering problems. So far this method has only been used for single-well potentials. In the present paper we have applied this method to potential (3) in order to resolve discrepancies in the existing values. To check the accuracy of this method for double-minimum potentials, we have also carried out calculations for certain values of the parameters in potential (1) which were used by Balsa et al (1983).

2. Procedure

The standard Taylor series approach to the solution of a differential equation (DE) with initial values given at z_{0} is to approximate the solution in the neighbourhood of z_{0} by a truncated Taylor series. The values of the derivatives at z_{0} are determined from successive differentiations of the DE. One then proceeds to construct a new Taylor series about $z_{1}=z_{0}+h$ using the derivatives of the first series. This process continues to generate an analytic continuation of the solution of the DE along the path $\left\{z_{0}, z_{1}, z_{2}, \ldots\right\}$. This technique requires successive differentiation of the DE, and becomes restricted if the DE has singularities anywhere in the complex z plane.

Holubec and Stauffer (1985) have proposed a way around this problem based on the idea of analytically continuing a Frobenius series rather than a Taylor series. The method is applied to second-order linear DE with a regular singularity and with analytic coefficients which are finite polynomials. In practice the method works for arbitrary order and for more general analytic coefficients. The technique was originally applied to second-order linear $D E$ of the form

$$
\begin{equation*}
u^{\prime \prime}+P(z) u^{\prime}+Q(z) u=0 \tag{5}
\end{equation*}
$$

with $P(z)$ and $Q(z)$ finite polynomials. However, it can also be adapted to more general equations (Hodgson 1988b).

Potentials of the form (1) or (3) can be easily handled with this procedure, as the DE takes the form

$$
\begin{equation*}
u^{\prime \prime}+Q(z) u=0 \tag{6}
\end{equation*}
$$

with

$$
\begin{equation*}
Q(z)=E-V(z) \tag{7}
\end{equation*}
$$

The general solution u is expanded in a Taylor series about the point z_{0} as

$$
\begin{equation*}
u=\sum_{i=0}^{N_{i}} c_{i}\left(z-z_{0}\right)^{i} . \tag{8}
\end{equation*}
$$

The polynomial coefficient $Q(z)$ must be expanded in a similar manner:

$$
\begin{equation*}
Q(z)=\sum_{i=0}^{q} \tilde{Q}_{i}\left(z-z_{0}\right)^{i} . \tag{9}
\end{equation*}
$$

By substituting these expansions for $u(z)$ and for $Q(z)$ into the $D E$, and by setting the coefficients of the different powers of $\left(z-z_{0}\right)$ to zero, we arrive at a set of recurrence relations to generate the coefficients c_{i}.

For the potential form (3) the complete expansion for $Q(z)$ becomes

$$
\begin{align*}
& Q(z)=\left(E-V_{0}\right)+6 V_{0} z_{0}^{2}-3 V_{0} z_{0}^{4}+12 V_{0} z_{0}\left(1-z_{0}^{2}\right)\left(z-z_{0}\right)+6 V_{0}\left(1-3 z_{0}^{2}\right)\left(z-z_{0}\right)^{2} \\
&-12 V_{0} z_{0}\left(z-z_{0}\right)^{3}-3 V_{0}\left(z-z_{0}\right)^{4} \tag{10}
\end{align*}
$$

where $V_{0}=200$. These lead to the general recurrence relation for the c_{i} coefficients:

$$
\begin{equation*}
(k+2)(k+1) c_{k+2}+\sum_{i=0}^{4} \tilde{Q}_{i} c_{k-i}=0 \tag{11}
\end{equation*}
$$

which is valid for $k \geqslant 0$ with the understanding that $c_{k}=0$ if $k<0$. The initial values $c_{0}=u\left(z_{0}\right)$ and $c_{1}=u^{\prime}\left(z_{0}\right)$ are used to start the series.

If we start from the origin, we can use the above results with $z_{0}=0$. In the general case a Frobenius series is used, with the appropriate characteristic exponent. For the oscillator problem under examination here the characteristic exponent is 0 , and so the regular Taylor series about $z_{0}=0$ suffices.

The initial conditions chosen at the boundary $z=0$ must be such that the generated wavefunction is either even or odd, since parity is preserved by this potential. Selecting $u(0)=c$ and $u^{\prime}(0)=0$ generates an even parity wavefunction, corresponding to the ground state, and every other energy level. Similarly, by selecting $u(0)=0$ and $u^{\prime}(0)=c$, odd parity functions are generated. Here c is an arbitrary normalisation constant.

The numerical procedure is based on a finite interval on the z axis, $0<z<R$. The eigenvalues are then computed by dividing this range into N_{s} equal intervals of length h. A Taylor series is generated about the origin ($z_{0}=0$), and is used to compute the values of the function and its derivative at $z=h$. Then z_{0} is set equal to h and the series (8) is used to calculate the wavefunction and its derivative at $2 h$. This process continues out to $z=R$, employing an initial guess for the eigenvalue E. The value of E is then adjusted and the process repeated until the value of the wavefunction at R is as close to zero as is possible within the precision of the calculations.

The process is initiated by locating two values of E which lie on either side of the correct eigenvalue, such that they produce values of the wavefunction at R having. opposite signs. The secant method is then used to generate a new guess for E :

$$
\begin{equation*}
E^{i+1}=E^{i}-u^{i}(R) \frac{E^{i}-E^{i-1}}{u^{i}(R)-u^{i-1}(R)} \tag{12}
\end{equation*}
$$

Here $u(z)$ represents the wavefunction, and the superscripts indicate the order of iteration. In practice, 7-10 iterations are required to achieve the precision presented below.

Application of this approach to potential (1) is effectively using what Chaudhuri and Mukherjee (1984) refer to as the finite-box approximation. The potential is unbounded in x, and must satisfy the boundary condition that the wavefunction vanish at $\pm \infty$. It has been found that the lower eigenvalues are unaffected by replacing this
with the condition that the wavefunction vanish at a finite R. This does not apply to potential (3) as it is defined to be infinite at the boundary, $x= \pm 2$.

3. Results and discussion

As a general remark, we note that the degree of accuracy (i.e. the number of significant figures) in the eigenvalues that we have been able to obtain by our method appears to diminish slowly with the increase in quantum numbers. Also the accuracy possible is usually greater for odd-parity levels than for even-parity levels. Higher accuracies can be achieved at the expense of greater computation times. The higher energy levels require that the range R be increased, with a consequent increase in the number of intervals.

In table 1 we compare the results obtained by our procedure for the potential (1) with those obtained by Balsa et al (1983) for certain values of k when $\lambda=1$. As k increases, the magnitude of the splitting decreases. Generally speaking, the agreement between our values and those of Balsa et al (1983) is very good. Some fine points, however, may be noted. For $k=50$, Balsa et al found E_{0} and E_{1} to be the same to 12 significant figures. Our more accurate results show that the splitting shows up at the 21 st significant figure. For the same value of k, Balsa et al found E_{38} and E_{39} to differ at the eleventh significant figure. Our results show that the two are identical to at least 17 significant figures.

Table 1. Eigenvalues for the double-well anharmonic oscillator of (1): (a) present study, (b) Balsa et al (1983).

		$k=5.0, \lambda=1$	$k=50.0, \lambda=1$
E_{0}	a	-3.41014276123983	-615.02009090275781656622
	b	-3.41014276124	-615.020090903
E_{1}	a	-3.250675362289236	-615.02009090275781656501
	b	-3.25067536229	-615.020090903
E_{20}	a	96.1017378427	-422.068788468852
	b	96.1017378427	-422.068788469
E_{38}	a	244.3669643645	-261.11280099698849
	b	244.366964365	-261.112800997
E_{39}	a	253.583300287527	-261.11280099698849
	b	253.583300288	-261.112800987

Next we consider the potential (3). Our results, along with those of wo and Talman (1980), are shown in table 2. The eigenvalues quoted from wo are those computed using the bisection method with extrapolation. It will be noticed that our results are quite close to those of wo but differ significantly from those of Talman (1980). The splitting increases rapidly as one goes to higher levels. Our values for ($E_{1}-E_{0}$), $\left(E_{3}-E_{2}\right)$ and $\left(E_{5}-E_{4}\right)$ are $9.8195 \times 10^{-12}, 3.3856 \times 10^{-9}$ and 5.19×10^{-16} respectively. At this point we wish to note a puzzling fact. While the individual eigenvalues of Talman differ from ours in the fifth, fourth and third significant place for these three pairs, the splittings are surprisingly close to our values. Talman's data give the following values for these three splittings: $11.7 \times 10^{-12}, 3.7575 \times 10^{-9}$ and 5.419935×10^{-6}. We have no simple explanation for this situation.

Table 2. Energies for the double-minimum potential of (3): (a) present study, (b) Wolniewicz and Orlikowski (1978), (c) Talman (1980).

E_{0}	a	-751.522312383846149
	b	-751.5223121
	c	-751.5805105919228
E_{1}	a	-751.522312383836329544
	b	-751.5223116
	c	-751.5805105919111
E_{2}	a	-656.713389223403
	b	-656.7133912
	c	-656.9889664473616
E_{3}	a	-656.71338922001744527
	b	-656.7133898
	c	-656.9889664436041
E_{4}	a	-565.390612802
	c	-566.0633800189521
E_{5}	a	-565.3906122831665
	c	-566.0633794769586

4. Conclusions

The analytic continuation procedure of Holubec and Stauffer (1985) offers a straightforward solution to the problem of obtaining high-accuracy wavefunctions and eigenvalues for Schrödinger's equation, even for potentials such as the double-minimum potentials considered here where the eigenvalues are almost degenerate.

Acknowledgment

This research was supported in part by a research grant from NSERC held by one of the authors (YPV).

References

Balsa R, Plo M, Esteve J G and Pacheco A F 1983 Phys. Rev. D 281945
Banerjee K and Bhatnagar S P 1978 Phys. Rev. D 184767
Bhattacharya S K 1985 Phys. Rev. A 311991
Brézin E, Parisi G and Zinn-Justin J 1977 Phys. Rev. D 16408
Chan S I and Stelman D 1963 J. Chem. Phys. 39545
Chaudhuri R N and Mukherjee B 1984 J. Phys. A: Math. Gen. 173327
Dennison D M and Uhlenbeck G E 1932 Phys. Rev. 41313
Ezawa H, Nakamura K and Yamamoto Y 1970 Proc. Japan. Acad. 46168
Fröman N, Fröman P O, Myhrman U and Paulsson R 1972 Ann. Phys., NY 74314
Gildener E and Patrascioiu A 1977 Phys. Rev. D 16423
Hodgson R J W 1988a J. Phys. A: Math. Gen. 21679
——1988b J. Phys. A: Math. Gen. 211563
Holubec A and Stauffer A D 1985 J. Phys. A: Math. Gen. 182141
Johnson B R 1977 J. Chem. Phys. 674086
Kolos W and Wolniewicz L 1969 J. Chem. Phys. 503228
Lin C S 1974 J. Chem. Phys. 604660
Morse P M and Stueckelberg E C G 1931 Helv. Phys. Acta 4337

Pajunen P 1980 Mol. Phys. 40605
Polyakov A M 1977 Nucl. Phys. B 120429
Somorjai R L and Hornig D F 1962 J. Chem. Phys. 361980
Talman J D 1980 J. Comput. Phys. 3719
Tobin F L and Hinze J 1975 J. Chem. Phys. 631034
Truhlar D G and Tarara W D 1976 J. Chem. Phys. 64237
Wicke B G and Harris D O 1976 J. Chem. Phys. 645236
Wolniewicz L and Orlikowski T 1978 J. Comput. Phys. 27169
Wu T Y 1933 Phys. Rev. 44727
Zhirnov N I and Turev A V 1980 Opt. Spectrosc. (USSR) 49142

