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Abstract. An analytic continuation procedure using Taylor series is utilised to produce 
very accurate wavefunctions and eigenvalues for a double-minimum potential having almost 
degenerate eigenvalues. Comparison is made with results obtained by other means. 

1. Introduction 

Double-minimum potentials occur in several areas of physics, and a variety of tech- 
niques have been used over the years to investigate their eigenvalues and other 
properties (Morse and Stueckelberg 1931, Dennison and LJhlenbeck 1932, Wu 1933, 
Somorjai and Hornig 1962, Chan and Stelman 1963, Ezawa et a1 1970, Froman et a1 
1972, Polyakov 1977, Brezin et a1 1977, Gildener and Patrascioiu 1977, Banerjee and 
Bhatnagar 1978, Zhirnov and Turev 1980, Pajunen 1980, Balsa et a1 1983, Bhattacharya 
1985). One such potential which has frequently been studied is the following: 

V( X) = - kx2 + Ax4 k, A > 0. (1) 

Its eigenvalue spectrum has the feature that the lower eigenvalues are closely bunched 
in pairs if the two wells are sufficiently separated. The Hamiltonian for the potential 
(1) can be written as 

H ( k, A ) = p - k X 2  + Ax4 p = -id/dx. ( 2 )  

As pointed out by Banerjee and Bhatnagar (1978), from the scaling (x + ax, p + a-’p)  
properties of the Hamiltonian H(k,  A )  it follows that H(k,  A )  and ~ - ~ H ( a ~ k ,  a 6 A )  
are unitarily equivalent and therefore have the same eigenvalues. Hence E,(k, A )  = 
k”*E,( 1, A’ ) ,  A ‘ =  k-3’2A. Thus one need only consider the eigenvalue problem of the 
reduced Hamiltonian H (  1, A )  = p 2  - x2 + Ax4. 

For accurate calculation of the eigenvalues of close-lying levels in double-minimum 
potentials, numerical methods have increasingly been used in recent years (Kolos and 
Wolniewicz 1969, Lin 1974, Tobin and Hinze 1976, Truhlar and Tarara 1976, Wicke 
and Harris 1976, Johnson 1977, Wolniewicz and Orlikowski 1978, Talman 1980). The 
most unfavourable conditions for a numerical integration arise when the potential in 
question has almost degenerate eigenvalues. One such potential was investigated by 
Wolniewicz and Orlikowski (1978) (WO): 

V(X) =20O(3x6-6x2- 1) (3) 
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with symmetric boundary value conditions 

y ( - 2 ) = y ( 2 ) = 0 .  (4) 
The lower levels for this potential are almost twofold degenerate (to almost 1 part in 

and consequently this problem is numerically difficult. WO computed the eigen- 
values for (3)  by the bisection method and also by the Cooley method. Talman (1980) 
used a modification of the Cooley method to calculate the six lowest levels of the same 
potential. An inspection of the results of WO and Talman (1980) shows that there are 
considerable differences in the results of these two studies. 

Recently one of the authors (Hodgson 1988a, b) has used an analytic continuation 
procedure using Taylor series to produce very accurate wavefunctions and eigenvalues 
for the Schrodinger equation. This method was first proposed by Holubec and Stauffer 
(1985) for scattering problems. So far this method has only been used for single-well 
potentials. In the present paper we have applied this method to potential (3) in order 
to resolve discrepancies in the existing values. To check the accuracy of this method 
for double-minimum potentials, we have also carried out calculations for certain values 
of the parameters in potential (1) which were used by Balsa et a1 (1983). 

2. Procedure 

The standard Taylor series approach to the solution of a differential equation (DE)  

with initial values given at zo is to approximate the solution in the neighbourhood of 
zo by a truncated Taylor series. The values of the derivatives at zo are determined from 
successive differentiations of the DE. One then proceeds to construct a new Taylor 
series about z1 = zo+ h using the derivatives of the first series. This process continues 
to generate an analytic continuation of the solution of the DE along the path 
{ zo ,  z l ,  z 2 , .  . .}. This technique requires successive differentiation of the DE, and 
becomes restricted if the DE has singularities anywhere in the complex z plane. 

Holubec and Stauffer (1985) have proposed a way around this problem based on 
the idea of analytically continuing a Frobenius series rather than a Taylor series. The 
method is applied to second-order linear DE with a regular singularity and with analytic 
coefficients which are finite polynomials. In practice the method works for arbitrary 
order and for more general analytic coefficients. The technique was originally applied 
to second-order linear DE of the form 

u ” + P ( z ) u ’ + Q ( z ) u  = o  ( 5 )  
with P ( z )  and Q ( z )  finite polynomials. However, it can also be adapted to more 
general equations (Hodgson 1988b). 

Potentials of the form (1 j or (3) can be easily handled with this procedure, as the 
DE takes the form 

urr+ Q ( z ) u  = o  (6) 

Q( z )  = E - V( z ) .  (7 )  

with 

The general solution U is expanded in a Taylor series about the point zo as 
N ,  

U = 1 C i ( Z  - Z J i .  (8) 
i = O  
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The polynomial coefficient Q( z )  must be 
4 

Q ( z ) =  d i ( Z - Z o ) i .  
i = O  

expanded in a similar manner: 

(9) 

By substituting these expansions for u ( z )  and for Q ( z )  into the DE, and by setting the 
coefficients of the different powers of ( z  - zo) to zero, we arrive at a set of recurrence 
relations to generate the coefficients ci. 

For the potential form (3) the complete expansion for Q ( z )  becomes 

Q( Z )  = ( E  - Vo) + 6 VOZ~ - 3 VOZ; + 12 V ~ Z " (  1 - z:)( z - z O )  + 6 Vo( 1 - 3 z:) ( z - ~ 0 ) ~  

- 12 v,z,( z - z0)? - 3 v,( z - z ~ ) ~  (10)  

where Vo=200. These lead to the general recurrence relation for the c, coefficients: 

which is valid for k 0 with the understanding that c k  = 0 if k < 0. The initial values 
co = u(zo )  and c1 = u'(zo)  are used to start the series. 

If we start from the origin, we can use the above results with zo = 0. In the general 
case a Frobenius series is used, with the appropriate characteristic exponent. For the 
oscillator problem under examination here the characteristic exponent is 0, and so the 
regular Taylor series about zo = 0 suffices. 

The initial conditions chosen at the boundary z = 0 must be such that the generated 
wavefunction is either even or odd, since parity is preserved by this potential. Selecting 
u ( 0 )  = c and u'(0) = 0 generates an even parity wavefunction, corresponding to the 
ground state, and every other energy level. Similarly, by selecting u ( 0 )  = 0 and u'(0)  = c, 
odd parity functions are generated. Here c is an arbitrary normalisation constant. 

The numerical procedure is based on a finite interval on the z axis, 0 < z < R. The 
eigenvalues are then computed by dividing this range into N, equal intervals of length 
h. A Taylor series is generated about the origin ( z o  = 0), and is used to compute the 
values of the function and its derivative at z = h. Then zo is set equal to h and the 
series (8) is used to calculate the wavefunction and its derivative at 2h. This process 
continues out to z = R, employing an initial guess for the eigenvalue E. The value of 
E is then adjusted and the process repeated until the value of the wavefunction at R 
is as close to zero as is possible within the precision of the calculations. 

The process is initiated by locating two values of E which lie on either side of the 
correct eigenvalue, such that they produce values of the wavefunction at R having 
opposite signs. The secant method is then used to generate a new guess for E :  

Here u ( z )  represents the wavefunction, and the superscripts indicate the order of 
iteration. In practice, 7- 10 iterations are required to achieve the precision presented 
below. 

Application of this approach to potential ( 1 )  is effectively using what Chaudhuri 
and Mukherjee (1984) refer to as the finite-box approximation. The potential is 
unbounded in x, and must satisfy the boundary condition that the wavefunction vanish 
at *a. It has been found that the lower eigenvalues are unaffected by replacing this 
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with the condition that the wavefunction vanish at a finite R. This does not apply to 
potential (3) as it is defined to be infinite at the boundary, x =  =t 2. 

3. Results and discussion 

As a general remark, we note that the degree of accuracy (i.e. the number of significant 
figures) in the eigenvalues that we have been able to obtain by our method appears 
to diminish slowly with the increase in quantum numbers. Also the accuracy possible 
is usually greater for odd-parity levels than for even-parity levels. Higher accuracies 
can be achieved at the expense of greater computation times. The higher energy levels 
require that the range R be increased, with a consequent increase in the number of 
intervals. 

In table 1 we compare the results obtained by our procedure for the potential (1) 
with those obtained by Balsa et a1 (1983) for certain values of k when A = 1. As k 
increases, the magnitude of the splitting decreases. Generally speaking, the agreement 
between our  values and those of Balsa et a1 (1983) is very good. Some fine points, 
however, may be noted. For k = 50, Balsa ef a1 found Eo and E ,  to be the same to 12 
significant figures. Our more accurate results show that the splitting shows up  at the 
21st significant figure. For the same value of k, Balsa et a1 found E,, and E,, to differ 
at  the eleventh significant figure. Our results show that the two are identical to at least 
17 significant figures. 

Table 1. Eigenvaiues for the double-well anharmonic oscillator of (1): (a)  present study, 
(b)  Balsa et a/ (1983). 

k = 5.0, A = 1 k = 50.0, A = 1 

-3.410 142 761 239 83 
-3.410 142 761 24 
-3.250 675 362 289 236 
-3.250 675 362 29 
96.101 737 842 7 
96.101 737 842 7 

244.366 964 364 5 
244.366 964 365 
253.583 300 287 527 
253.583 300 288 

-615.02009090275781656622 
-615.020 090 903 
-615.02009090275781656501 
-615.020 090 903 
-422.068 788 468 852 
-422.068 788 469 
-261.112 800 996 988 49 
-261.112 800 997 
-261.1 12 800 996 988 49 
-261.112 800987 

Next we consider the potential (3). Our results, along with those of WO and Talman 
(1980), are shown in table 2 .  The eigenvalues quoted from WO are those computed 
using the bisection method with extrapolation. It will be noticed that our results are 
quite close to those of WO but difTer significantly from those of Talman (1980). The 
splitting increases rapidly as one goes to higher levels. Our values for ( E ,  - E o ) ,  
( E ,  - E,) and ( E ,  - E4) are 9.8195 x 3.3856 x and 5.19 x respectively. 
At this point we wish to note a puzzling fact. While the individual eigenvalues of 
Talman differ from ours in the fifth, fourth and  third significant place for these three 
pairs, the splittings are surprisingly close to our values. Talman’s data give the following 
values for these three splittings: 11.7 x 3.7575 x and 5.419 935 x We 
have no simple explanation for this situation. 
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Table 2. Energies for the double-minimum potential of (3) :  (a )  present study, (b) Wol- 
niewicz and Orlikowski (1978), (c) Talman (1980). 

-751.522 312 383 846 149 
-751.522312 1 
-751.580 510 591 922 8 
-751.522 312 383 836 329 544 
-751.522 311 6 
-751.580 510 591 911 1 
-656.713 389 223 403 
-656.713 391 2 
-656.988 966 447 361 6 
-656.713 389 220 017 445 27 
-656.713 389 8 
-656.988 966 443 604 1 
-565.390 612 802 
-566.063 380 018 952 1 
-565.390 612 283 166 5 
-566.063 379 476 958 6 

4. Conclusions 

The analytic continuation procedure of Holubec and Stauff er (1985) offers a straightfor- 
ward solution to the problem of obtaining high-accuracy wavefunctions and eigenvalues 
for Schrodinger’s equation, even for potentials such as the double-minimum potentials 
considered here where the eigenvalues are almost degenerate. 
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